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Préambule
L’épreuve écrite proposée ci-après aborde plusieurs facettes du métier d’ingénieur de recherche chez
Inria : l’organisation du développement, l’analyse de documents, les capacités rédactionnelles ainsi
que la maîtrise d’outils et méthodes de développement dans un contexte scientifique.

N’oubliez pas que c’est une épreuve de concours, et non un examen : il n’est pas requis que vous
répondiez parfaitement à toutes les questions pour pouvoir espérer voir votre candidature retenue.
La première partie en particulier teste des domaines très variés et il est donc attendu que la plupart
des candidats ne répondent qu’à certaines questions.

La  note  de l’épreuve écrite  et  la  note  attribuée à  l’issue de l’épreuve orale  ont  le  même poids
(coefficient 2 pour le dossier,  3 pour cet  écrit  et  3 pour l’oral)  dans la note finale attribuée aux
candidats.

Consignes pour la langue de rédaction : 

Les réponses seront écrites en français sauf quand cela sera explicitement indiqué autrement.
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Première partie (6 points)

Cette première partie compte pour 6 points, vous pouvez faire des réponses courtes en quelques 
lignes pour chacun des points.

 

Q 1.1 : Compilation
Donnez deux raisons pour lesquelles un compilateur est généralement décomposé en passes (ou 
phases) et indiquez un ensemble typique de passes et les structures de données passées entre elles.

Q 1.2 : Reproductibilité
Vous souhaitez reproduire des résultats publiés dans une étude récente. Quels problèmes pourriez-
vous rencontrer ? Comment procéderiez-vous pour assurer un certain niveau de reproductibilité des 
études basées sur vos travaux/développements ?

Q 1.3 : Debug
Un logiciel embarqué que vous développez en langage C sur un processeur ARM sous Linux s’exécute 
correctement pendant quelques minutes puis s’arrête de façon inattendue. Quels outils proposez-
vous pour trouver la raison de cet arrêt et la corriger ?

Q 1.4 : Analyse de performance
Comment identifieriez-vous les problèmes de performance d’un code Python ? Avec quels outils 
peut-on accélérer un code Python, par exemple en Machine Learning ? 
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Deuxième partie (7 points)

Exercice d’analyse de projet, proposition d’architecture logicielle et 
matérielle.

Vous devez prendre en main un projet de développement de taille importante dans une équipe de 
recherche. L'équipe travaille sur des briques logicielles modulaires de calcul scientifique et de 
traitement du signal avec les principaux objectifs suivants :

 Mettre à disposition un ensemble de briques logicielles robustes et performantes pouvant 
être utilisée dans des pipelines de traitement ;

 Construire une fondation modulaire que d'autres personnes, de l'équipe ou extérieures, 
peuvent étendre et développer ;

 Apprendre comment les méthodes utilisées se comportent et s'articulent entre elles, afin de
pouvoir concevoir et construire de meilleurs outils.

Sur sa durée de vie, le projet compte plusieurs contributeurs permanents actifs dans l'équipe, des 
contributeurs ponctuels en thèse ou en postdoc et de nombreux utilisateurs externes, pouvant 
également proposer des améliorations. Le mode de fonctionnement est mené par apports successifs 
(travaux de thèse, de postdoc sous forme de preuves de concepts ou bien de réalisations autonomes)
et parfois réalisés dans des langages et modèles qui peuvent être différents. Un des enjeux pour 
l'équipe est de consolider et d'intégrer ces apports dans une architecture commune pour constituer 
un socle de développement durable.

En effet, bien que le but scientifique de l'équipe de recherche soit de produire de nouvelles 
méthodes et algorithmes, les membres considèrent le développement comme une condition 
essentielle à la réussite de leurs projets, que ce soit pour servir de base à de nouvelles recherches qui
s'appuient sur les idées précédentes, mais aussi comme condition nécessaire pour organiser une 
recherche reproductible. De plus il est important que les développements soient de niveau industriel 
pour assurer la crédibilité des travaux et mener à des utilisations concrètes en dehors du cercle 
restreint des chercheurs.

Il y a souvent une tension entre ces objectifs et la prise en main du projet doit refléter l'agilité de 
navigation nécessaire entre ces objectifs.
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Vous allez prendre le rôle d'architecte logiciel dans ce projet. Cela implique de prendre en main les 
briques logicielles et guider le développement et l'intégration de celles-ci. Ce travail nécessite de 
réfléchir sur l'architecture logicielle utilisée pouvant s'adapter au mieux aux différentes contraintes.

Pour l'exercice, vous pouvez considérer que les pipelines logiciels visés sont programmés en utilisant 
un langage de type Python avec des modules de calcul pouvant être programmés dans différents 
langages compilés (C, C++, OCaml, etc)

Q 2.1 : Quels sont les points d'attention dans l'architecture globale des modules que vous 
proposeriez de mettre en avant pour maintenir et faire évoluer ce projet ?

Vous pourrez notamment indiquer sur un ou plusieurs schémas (exemples d'instances de pipelines 
de traitement, schéma d'organisation de codes sources et outils) les points sur lesquels il vous 
semble nécessaire de proposer des interfaces (API), en indiquant leurs rôles, les langages dans 
lesquels les éléments peuvent être réalisés, manuellement ou par génération de code, leur fonction, 
etc.

Q 2.2 : Proposez une mise en place de règles de bonne pratique et une méthodologie pour 
l'intégration d'une nouvelle brique logicielle dans le projet, que ce soit pour un module dont 
l'évolution est considérée comme figée (un algorithme de référence provenant de la littérature) ou 
bien d'un module étant le sujet d'une recherche active avec de nombreuses modifications à venir. 

        

Q 2.3 : L'équipe souhaite également disposer, pour certains modules, de plusieurs versions 
(implémentations) afin de profiter des possibilités de matériels spécialisés (GPU, DSP, FPGA, etc) 
pour l'amélioration de performances. Comment proposeriez-vous de gérer le déport des calculs vers 
ces accélérateurs matériels dans votre architecture et quelles parties devrez-vous modifier ? Vous 
pourrez discuter en particulier les problèmes liés aux échanges de données et leurs impacts.
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Troisième partie (7 points)

Exercice d’analyse de publication scientifique

Parmi les 2 sujets proposés, choisissez le sujet que vous souhaitez traiter en fonction du profil du 
poste sur lequel vous avez déposé votre candidature. Seul le premier sujet apparaissant sur votre 
copie sera noté.

Toutes les réponses de ces parties (3.1 et 3.2) sont attendues en anglais. 

3.1 Profil « Communication et traitement du signal »

Cette partie s’appuie sur l’article « Real-time Machine Learning for Symbol Detection in MIMO-OFDM
Systems » de Yibin Liang, Lianjun Li, Yang Yi et Lingjia Liu (IEEE INFOCOM 2022). Le texte de l’article 
est donné en annexe.

Q 3.1.1 : Describe in few sentences the OFDM principle.

Q 3.1.2 : What is a line of sight path ?

Q 3.1.3 : What is the difference between supervised and unsupervised learning ?

Q 3.1.4 : Among these problems, which ones are interesting to solve with machine learning? (with 
short justification)

1. Finding the optimal time to post on a web page

2. Finding the shortest path between 2 nodes in a graph

3. Predicting the number of bikes to assign to each station in a bike renting society

4. Denoising a radio signal

Q 3.1.5 : Provide a summary (around 5 lines) of the paper, depicting the goal of the work and its 
outcome.

Q 3.1.6 : On fig.11 of the paper, which are the best (resp. worst) scenarios, and how can you explain 
this ?

Q 3.1.7 : On fig.11 of the paper, justify the performances difference between LMMSE and ESN 
approaches.
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3.2 Profil « Calcul scientifique pour l’apprentissage et le 
traitement du signal »

Questions préliminaires :

Q 3.2.1 : Explain what a linear regression problem is in statistics. Explain the bias-variance dilemma 
and comment on the interest of using regularized models in this context.

Q 3.2.2 : Describe the gradient descent algorithm and comment on the advantages and 
disadvantages of using it. Explain the difference with the stochastic version of this algorithm; discuss 
the cases where it is preferable to use one or the other method and how to choose the descent step 
in both cases.

La partie suivante s’appuie sur l’article « FAST RANDOMIZED NUMERICAL RANK ESTIMATION » de 
Maike Meier et Yuji Nakatsukasa (arXiv:2105.07388). Le texte est donné en annexe. Ce texte a été 
modifié en masquant des parties pour limiter la durée de l’exercice.

Q 3.2.3 : Provide a short summary of the article, identify limitations and ways to address them 
and/or prospects for further development of the methods presented. A critical look at the article will 
be appreciated. Put the article in perspective with a potential software development.
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FAST RANDOMIZED NUMERICAL RANK ESTIMATION

MAIKE MEIER AND YUJI NAKATSUKASA⇤

Abstract. Matrices with low-rank structure are ubiquitous in scientific computing. Choosing
an appropriate rank is a key step in many computational algorithms that exploit low-rank structure.
However, estimating the rank has been done largely in an ad-hoc fashion in previous studies. In
this work we develop a randomized algorithm for estimating the numerical rank of a matrix. The
algorithm is based on sketching the matrix with random matrices from both left and right; the
key fact is that with high probability, the sketches preserve the orders of magnitude of the leading
singular values. The rank can hence be taken to be the number of singular values of the sketch that
are larger than the prescribed threshold. For an m ⇥ n (m � n) matrix of numerical rank r, the
algorithm runs with complexity O(mn logn + r

3), or less for structured matrices. The steps in the
algorithm are required as a part of many low-rank algorithms, so the additional work required to
estimate the rank can be even smaller in practice. Numerical experiments illustrate the speed and
robustness of our rank estimator.

Key words. Rank estimation, numerical rank, randomized algorithm, Marčenko-Pastur rule

AMS subject classifications. Primary, 65F55; Secondary, 65F99, 68W20, 60B20

1. Introduction. Low-rank matrices are ubiquitous in scientific computing and
data science. Sometimes a matrix of interest can be shown to be of numerically low
rank [4, 39], for example by showing that the singular values decay rapidly. More
often, matrices that arise in applications may have a hidden low-rank structure, such
as low-rank o↵-diagonal blocks [26, 28]. As is well known, low-rank approximation is
also the basis for principal component analysis.

Numerous studies and computational algorithms exploit the (approximately) low-
rank structure of these types of matrices to devise e�cient algorithms. Such al-
gorithms usually require finding a low-rank approximation of a given matrix. For
large-scale matrices that cannot be treated by classical algorithms, randomized algo-
rithms have become a powerful and reliable tool for e�ciently computing a near-best
low-rank approximation. Landmark references on randomized SVD are [16,42].

A key step in low-rank algorithms, including randomized SVD, is the determina-
tion of the numerical rank. For instance, a variety of low-rank factorization techniques
require the target rank of the factorization as input information. Once a low-rank
approximation Âr of the specified target rank has been computed, a posteriori esti-
mation of the error kA� Ârk via a small number of matrix-vector multiplications [28]
is a reliable means of checking if the input rank r was su�cient. If r was too low,
one would need to sample the matrix with more vectors. This clearly requires more
computational work, and can be a major di�culty in the streaming model, wherein
revisiting the matrix is impossible [37]. Conversely, if the input rank r was too high,
the computational cost of computing Âr would be higher than it could be. Having a
fast and reliable rank estimator is therefore highly desirable.

In this work we propose and analyze a fast randomized algorithm for estimating
the numerical rank of a matrix A 2 Fm⇥n. The algorithm is based on sketching AX

and then forming Y AX, where Y,X are random (subspace embedding) matrices. The
key idea is that with high probability, the singular values of AX are good estimates
of the (leading) singular values of A. Therefore the decay of �i(A) can be reliably
estimated by the decay of �i(AX). To estimate the �i(AX) we once again sketch

⇤Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK.
(Maike.Meier@maths.ox.ac.uk, nakatsukasa@maths.ox.ac.uk)

1

ar
X

iv
:2

10
5.

07
38

8v
1 

 [m
at

h.
N

A
]  

16
 M

ay
 2

02
1

mailto:Maike.Meier@maths.ox.ac.uk,%20nakatsukasa@maths.ox.ac.uk


2 MAIKE MEIER AND YUJI NAKATSUKASA

AX to obtain Y AX; it is only �i(Y AX) (or their estimates) that we actually need to
compute.

To qualitatively understand why the singular values are roughly preserved, con-
sider the case where A is rank-r⇤ where r⇤ ⌧ n, so that the reduced SVD is A =
U1⌃1V

⇤
1 where V1 2 Cn⇥r⇤ . Let X 2 Fn⇥r be a Gaussian embedding matrix with iid

elements N (0, r�1). Then AX = U1⌃1(V ⇤
1 X) = U1⌃1X1, where X1 := V

⇤
1 X is an

r⇤⇥r Gaussian matrix, also with N (0, r�1) elements. Now since �i(AX) = �i(⌃1X1),

it follows that �min(X1) 
�i(AX)
�i(A)  �max(X1). By the Marcenko-Pastur law [24],

assuming r⇤/r > 1, X1 is well conditioned with high probability, that is, the lower
and upper bounds are quite close; thus giving a reliable estimate for �i(A). More
generally when A has higher rank but �r(A)  ✏, the above argument will need some
modification to treat the e↵ect of the trailing singular values; fortunately, they only
have an O(✏) e↵ect, which does not unduly a↵ect the rank estimator. These claims
will be made precise in Section 3.

The task and development has close connections to results in the statistical liter-
ature, some of which we mention along the way.

The complexity of our algorithm is O(mn log n+r
3) for dense m⇥n matrices, and

can be lower if A has structure that can be exploited for computing the sketches AX

and Y AX. This is clearly a subcubic complexity (assuming r ⌧ m,n), and it runs
significantly faster than computing the full SVD. Moreover, in many cases, computing
AX (which is usually the dominant part of our rank estimation algorithm) is a required
part of the main algorithm (e.g. randomized SVD); and in some algorithms [10, 32]
this is true even of Y AX. In such cases, the additional work needed for estimating
the rank is therefore significantly smaller, such as O(r3) or sometimes even O(r).

Notation. Throughout, �i(A) denotes the ith largest singular value of the matrix
A. We use k ·k to denote the spectral norm kAk2 = �1(A), and kAkF is the Frobenius
norm. F denotes the field, in our case F = R or F = C. Unless specified otherwise A

is m⇥ n where m � n. The numerical rank estimate will be denoted by r̂.
Throughout the paper we use X and Y for random oblivious subspace embedding

matrices, such that with high probability, for any fixed Q with orthonormal columns
we have �max(QT

X),�max(Y Q)  1 + ✏ and �min(QT
X),�min(Y Q) � 1� ✏ for some

✏ 2 (0, 1). We use r, r1 and r2 to refer to the size of embedding matrices, which must
be at least the number of columns in Q. The matrix X is required to have more
columns than Q, and the same goes for the rows of Y . For brevity we simply call such
X and Y embedding matrices.

The analysis will be specified to Gaussian or subsampled randomized trigonomet-
ric transform (SRTT) embedding matrices at times. We will use G 2 Rn⇥r, where
n > r, to denote a matrix where each entry is iid N (0, 1) distributed and call this
matrix a (standard) Gaussian matrix. A Gaussian matrix can be scaled to an embed-
ding matrix by defining X = G/

p
r; we call the scaled Gaussian matrices Gaussian

embedding matrices. SRTT matrices are defined in Section 3.3 and as the scaling is
included in the definition, they are naturally embedding matrices. We will use ⇥ to
refer to the set of SRTT matrices.

1.1. Numerical rank and goal of a rank estimator. So far we have been
using the term “the numerical rank” informally. Let us now define the notion. This
is a standard definition, see for example [4].

Definition 1.1. Let A 2 Fm⇥n. The ✏-rank of A, denoted by rank✏(A), is the
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integer1 i such that �i(A) > ✏ � �i+1(A).

What is the goal of a rank estimator? One natural answer of course is that
the estimator should output rank✏(A) given A and the (user-defined) threshold ✏.
However, we argue that the situation is more benign: consider, for example, a matrix
with k singular values > 10✏, five singular values in (✏, 1.1✏), five more in (0.9✏, ✏),
and the remaining n � k � 10 are < 0.01✏. What should the estimator output? Is it
crucial that the “correct” value rank✏(A) = k + 5 is identified?

In this paper we take the view that the goal of the rank estimator is to find a
good ✏-rank, not necessary the ✏-rank. In the example above, any number between k

and k+10 would be an acceptable output. In most applications that we are aware of
(including low-rank approximation, regularized linear systems, etc), there is little to
no harm in choosing a rank r̂ 6= rank✏: a slight overestimate r̂ > rank✏ usually results
in slightly more computational work, whereas a slight underestimate r̂ < rank✏ is fine
if �r̂+1(A) = O(✏), that is, a rank-r̂ matrix can approximate A to O(✏)-accuracy.

On the other hand, it is clearly not acceptable if the rank is unduly underestimated
in that �r̂+1(A) � ✏. It is also unacceptable if �r̂(A) ⌧ ✏. The goal in this paper is
to devise an algorithm that e�ciently and reliably finds an r̂ such that

• �r̂+1(A) = O(✏) (say, �r̂+1(A) < 10✏): r̂ is not a severe underestimate, and
• �r̂(A) = ⌦(✏) (say, �r̂(A) > 0.1✏): r̂ is not a severe overestimate.

Our rank estimate will satisfy these conditions with high probability. In partic-
ular, in situations where the numerical rank is clearly defined, i.e., if a clear gap is
present in the spectrum �r(A) � ✏ � �r+1(A), the algorithm will reliably find the
exact rank r̂ = rank✏(A).

In addition, in situations where it is unknown whether the matrix A is low-rank
approximable, our rank estimator can tell us (roughly) how well A can be approxi-
mated with a low-rank matrix.

This paper is organized as follows. Section 2 discusses related studies in the
literature. In Section 3 we show that �i(AX) gives useful information about �i(A)
for leading values of i. Then in Section 4 we show that �i(AX) can be estimated via
�i(Y AX). Section 5 summarizes the overall rank estimation algorithm. Numerical
experiments are presented in Section 6.

1If no such i exists, we take rank✏(A) = min(m,n); however, in this paper we are never interested
in this full-rank case.






















Real-time Machine Learning for Symbol Detection
in MIMO-OFDM Systems

Yibin Liang, Lianjun Li, Yang Yi, and Lingjia Liu
Bradley Department of Electrical and Computer Engineering

Virginia Tech, Blacksburg, VA 24060, USA

Abstract—Recently, there have been renewed interests in ap-
plying machine learning (ML) techniques to wireless systems.
Nevertheless, ML-based approaches often require a large amount
of data in training, and prior ML-based MIMO symbol detec-
tors usually adopt offline learning approaches, which are not
applicable to real-time signal processing. This paper adopts echo
state network (ESN), a prominent type of reservoir computing
(RC), to the real-time symbol detection task in MIMO-OFDM
systems. Two novel ESN training methods, namely recursive-
least-square and generalized adaptive weighted recursive-least-
square, are introduced to enhance the performance of ESN
training. Furthermore, a decision feedback mechanism is adopted
to improve training efficiency and BER performance. Simulation
studies show that the proposed methods perform better than
previous conventional and ML-based MIMO symbol detectors.
Finally, the effectiveness of our RC-based approach is validated
with a software-defined radio (SDR) transceiver and extensive
field tests in various real-world scenarios. To the best of our
knowledge, this is the first real-time SDR implementation for
ML-based MIMO-OFDM symbol detectors. Our work strongly
indicates that ML-based signal processing could be a promising
and critical approach for future wireless networks.

Index Terms—machine learning, reservoir computing, echo
state network, MIMO-OFDM, symbol detection, wireless net-
work, real-time signal processing, software-defined radio

I. INTRODUCTION

Machine learning (ML) has achieved tremendous success in
computer science fields, such as pattern and speech recognition
[1]–[3], image processing and classification [4]–[6], and nat-
ural language processing [7], [8]. Recently, there have been
renewed interests and efforts in applying machine learning
and data-driven techniques to various aspects of wireless
communication systems [9], ranging from modulation and
signal classification [10], channel coding [11], transceiver
design [12] to radio resource allocation and spectrum shar-
ing [13]. Compared with traditional model-based approaches,
ML-based approaches avoid the model mismatch issue and
potentially provide better performance by implicitly learning
the underlying statistical models from data. However, ML-
based approaches usually require a large amount of data
to train the supporting neural networks (NN), which are
difficult to obtain in real-time wireless systems with limited
sets of reference signals (pilots) available. Furthermore, the
complexity of the underlying neural networks often introduces
high computation costs in terms of both hardware resources
and signal processing delay.

The use of orthogonal frequency-division multiplexing
(OFDM) in multiple-input multiple-output (MIMO) wireless

channels has been one of the driving forces behind the
tremendous success in current wireless systems, including
4G/5G cellular networks and wireless local area networks.
However, with the introduction of massive MIMO architec-
ture and millimeter-wave bands, conventional model-based
signal processing techniques face many new challenges. For
example, it is challenging to model and compensate for the
characteristics of millimeter-wave band antenna arrays. In
addition, traditional signal processing techniques may not scale
to massive MIMO scenarios due to exponentially-increasing
complexity. ML-based and data-driven techniques may be-
come promising candidates for innovative solutions to solve
these issues. However, applying ML-based techniques to the
physical layer signal processing is more difficult due to limited
training data and real-time processing requirements.

In this paper, we focus on the problem of applying ML-
based real-time signal processing to the symbol detection task
in MIMO-OFDM systems. An NN-based approach for symbol
detection in OFDM systems was provided in [14], where a
multi-layer perceptron with three hidden layers was adopted.
Convolutional neural networks (CNN) were adopted in [15]
to exploit the convolutional nature of multipath channels.
An extreme learning machine based method was introduced
in [16] to expedite the training process. In [17], model-
based and data-driven OFDM receivers were introduced. For
MIMO scenarios, [18] applied deep neural networks (DNN)
to conduct symbol detection based on the estimated channel
inputs and received signals. [19] utilized DNN to fine-tune
parameters of conventional symbol detection methods. The
performance of CNN-based and DNN-based methods with
and without channel state information was compared in [20].
However, all of these methods require a large amount of data to
pre-train the NN in an offline manner, making them difficult to
be adopted in current communications systems. Furthermore,
the offline training approaches usually have difficulty with
generalization performance. For example, symbol detection
models trained using predefined wireless channel realizations
will perform poorly in real-world scenarios with different
channel statistics.

Online learning schemes using reservoir computing (RC)
have been studied and developed in [21]–[24]. RC requires
simpler training procedures and fewer training data than other
neural networks, making it a compelling candidate for real-
time signal processing in wireless systems. The efficiency of
RC-based MIMO-OFDM symbol detection was verified in

978-1-6654-5822-1/22/$31.00 ©2022 IEEE 2068

IE
EE

 IN
FO

C
O

M
 2

02
2 

- I
EE

E 
C

on
fe

re
nc

e 
on

 C
om

pu
te

r C
om

m
un

ic
at

io
ns

 | 
97

8-
1-

66
54

-5
82

2-
1/

22
/$

31
.0

0 
©

20
22

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IN
FO

C
O

M
48

88
0.

20
22

.9
79

68
54

Authorized licensed use limited to: INRIA. Downloaded on September 19,2022 at 14:35:30 UTC from IEEE Xplore.  Restrictions apply. 



[21]. Follow-up work in [22] improved the performance by
adding a sliding window to the input of RC. Later, an RC-
based deep neural network was introduced in [23] to further
improve system performance. Unlike previous work where the
NNs are trained on an OFDM frame/subframe basis, scattered
pilots were utilized in [24] to update the NN weights on an
OFDM symbol basis to facilitate real-time machine learn-
ing. The proposed method was implemented on a software-
defined radio (SDR) platform for single-input single-output
(SISO) OFDM systems. Nevertheless, the training efficiency
and real-time performance in MIMO scenarios have not been
thoroughly investigated.

This work extends and improves the RC-based symbol
detection approach for MIMO-OFDM systems. Specifically,
two recursive methods for the real-time symbol-by-symbol
training of echo state network (ESN), namely recursive least
square (RLS) and generalized adaptive weighted recursive
least square (GAW-RLS), are adopted (also reported in [25]),
in combination with a decision feedback mechanism. The main
contributions of this work are outlined below:

• By adopting the RLS and GAW-RLS methods for ESN
training, our symbol detection approach not only improves
the BER performance in time-varying channels but also
becomes more flexible to different pilot designs. These
recursive methods are critical for meeting the real-time pro-
cessing requirement in real-world MIMO-OFDM systems.

• The new decision feedback mechanism further improves the
training process making it applicable to wireless systems
with minimal training data. It also improves the BER
performance, as validated by simulation studies, which
further demonstrates the effectiveness of RC-based symbol
detection methods compared with other offline approaches.

• The introduced ML-based scheme has been successfully
implemented in a software-defined radio platform. The
effectiveness and advantage of the ML-based approach
are verified by extensive tests in real-world scenarios.
To the best of our knowledge, this is the first real-time
implementation of ML-based symbol detection for MIMO-
OFDM systems, showing that real-time machine learning
is a promising paradigm for future wireless systems.

The structure of the paper is as follows. Section II describes
the MIMO-OFDM system model and conventional model-
based receiver procedures. Section III provides background
for reservoir computing and ESN and discusses our RC-based
symbol detection procedures, including the RLS and GAW-
RLS methods. Section IV introduces the decision feedback
mechanism for ESN training and summarizes the simulation
study showing that the new symbol detection methods can
achieve better performance than the conventional and previous
ML-based symbol detectors. Section V discusses the real-time
SDR transceiver built using the GNU Radio [26] framework
according to the IEEE 802.11 standard [27]. Extensive field
test results for various real-world scenarios in Section VI
show that the RC-based symbol detection method consistently
achieves better performance than conventional methods.

Figure 1. MIMO-OFDM system architecture

II. MIMO-OFDM SYSTEMS

A. System Model

The architecture of a MIMO-OFDM system is shown in
Figure 1, where the base station (BS) and user equipment (UE)
can function as both transmitter and receiver. Nt independent
data streams are transmitted in parallel through Nt antennas
and recovered with Nr (Nr ≥ Nt) receiver antennas. The ith
frequency-domain OFDM symbol for the tth data stream is
denoted as

X̃t
i , [X̃t

i (0), · · · , X̃t
i (k), · · · , X̃t

i (Nsc − 1)]T , (1)

where ·T is matrix transpose operator, Nsc is total number
of data sub-carriers per OFDM symbol, and X̃t

i (k) is the
modulated QAM symbol for subcarrier k.

Before OFDM modulation, the ith frequency-domain QAM
symbols at sub-carrier k of all data streams are weighted by
a pre-coding matrix Q(k) ∈ CNt×Nt as

Xi = Q(k)X̃i, (2)

where Xi , [X0
i (k), · · · , Xt

i (k), · · · , XNt−1
i (k)]T denotes

the output of the pre-coding procedure. If Q(k) is an identity
matrix, then Xi = X̃i.

Next, an inverse fast Fourier transform (IFFT) is performed
on Xt

i for each transmitter, and the last Ncp samples of the
IFFT output are copied and inserted to the beginning of the
time-domain signal as cyclic prefix (CP). Denote the ith time
domain OFDM symbol at transmitter antenna t as

xti , [xti(0), · · · , xti(n), · · · , xti(Ncp +Nsc − 1)]T , (3)

where xti(n) is the nth sample of the ith time domain OFDM
symbol. Note that Xt

i can be recovered by removing the
CP of xti and conducting a fast Fourier transform (FFT).
The time domain OFDM frame at transmitter antenna t is
a concatenation of OFDM symbols, denoted as

xt , [(xt1)T , · · · , (xti)T , · · · , (xtN )T ]T , (4)

where N is the total number of OFDM symbols in an OFDM
frame. The received signal is a superposition of transmitted
signals over the MIMO channel, and the received time domain
OFDM frame yr for antenna r can be expressed as

yr =

Nt−1∑
t=0

u(xt) ~ hr,t + n, 0 ≤ r < Nr, (5)

where u(·) is a non-linear function represents the signal dis-
tortion caused by transmitter circuits, such as power amplifier

2069
Authorized licensed use limited to: INRIA. Downloaded on September 19,2022 at 14:35:30 UTC from IEEE Xplore.  Restrictions apply. 



Figure 2. Wi-Fi frame structure and pilot patterns illustrating the training
overhead

(PA) [28]; ~ is the convolution operator; n is additive Gaus-
sian noise; hr,t = [hr,t0 , hr,t1 , · · · , hr,tNcp

]T ∈ C(Ncp+1) denotes
the channel impulse responses between receiver antenna r and
transmitter antenna t. In general hr,t is gradually changing
over time due to the dynamic nature of the wireless environ-
ment. This paper adopts the quasi-static channel assumption
that hr,t remains constant within one OFDM symbol and
changes across OFDM symbols.

At the receiver, the ith received time domain OFDM symbol
of antenna r is denoted as

yri , [yri (0), · · · , yri (n), · · · , yri (Ncp +Nsc − 1)]T , (6)

and its frequency domain counterpart as

Y r
i , [Y ri (0), · · · , Y ri (k), · · · , Y ri (Nsc − 1)]T . (7)

The goal of symbol detection is to recover all transmitted data
streams X̃t

i by jointly processing received signals yri from all
receiver antennas.

For facilitating symbol detection, MIMO-OFDM systems
embed known information, a.k.a reference signals, into the
OFDM symbols X̃t

i . For example, in Wi-Fi systems, as spec-
ified in standard 802.11 [27], the first NTS OFDM symbols in
a frame are designated as training sequence (TS), and scattered
pilots are placed among the remaining OFDM symbols. The
training overhead pattern is illustrated in Figure 2. This paper
refers to the first NTS OFDM symbols in a frame as TS and
the remaining OFDM symbols as data symbols.

B. Conventional Methods

The conventional symbol detection method in MIMO-
OFDM systems includes two steps: First, the channel is
estimated using the training sequence with the linear minimum
mean square error (LMMSE) method. Then the estimated
channel is used to recover transmitted symbols by an LMMSE
symbol detector.

1) LMMSE channel estimation: Assume the first NTS
transmitted OFDM symbols in an OFDM frame is designed
as training sequence (TS) and is known to the receiver. Then
the received TS symbols at sub-carrier k can be expressed as

YTS(k) = H(k)XTS(k) + G, (8)

where

YTS(k) ,

 Y 0
1 (k) · · · Y 0

NTS
(k)

...
...

...
Y Nr−1
1 (k) · · · Y Nr−1

NTS
(k)

 , (9)

XTS(k) ,

 X0
1 (k) · · · X0

NTS
(k)

...
...

...
XNt−1

1 (k) · · · XNt−1
NTS

(k)

 , (10)

H(k) ,

 H0,0(k) · · · H0,Nt−1(k)
...

...
...

HNr−1,0(k) · · · HNr−1,Nt−1(k)

 , (11)

and G is the additive Gaussian noise with variance σ2. The
wireless channel at sub-carrier k is estimated by LMMSE as

Ĥ(k) = YTS(k)X∗TS(k)
(
XTS(k)X∗TS(k) + σ2I

)−1
, (12)

where ·∗ denotes conjugate transpose, I is the identity matrix.
2) LMMSE symbol detection: The maximum likelihood

method is the optimal detector for minimizing the error
probability for MIMO symbol detection. However, this optimal
method has exponential complexity and thus is not used in
practical wireless systems. Sphere decoding (SD) is a non-
convex solver that performs optimized maximum likelihood
detection under ideal assumptions but has higher computation
complexity than linear receivers. LMMSE symbol detection
is a linear method widely used in wireless communications
systems due to its low complexity. The LMMSE detection
procedure is described as follows.

Using the estimated channel Ĥ , the ith received OFDM
symbol at sub-carrier k can be expressed as

Yi(k) = Ĥ(k)Xi(k) + G, (13)

where Yi(k) , [Y 0
i (k), . . . , Y Nr−1

i (k)]T , and Xi(k) ,
[X0

i (k), . . . , XNt−1
i (k)]T . Then, the LMMSE symbol detec-

tion is performed as

X̂i(k) =
(
Ĥ∗(k)Ĥ(k) + σ2I

)−1
Ĥ∗(k)Yi(k). (14)

The LMMSE detector requires estimated channel as input,
as well as prior knowledge of noise variance and channel
statistics. The limitation and performance loss with imperfect
channel estimation will be demonstrated in the simulation
studies as well as real-world tests.

III. RC-BASED SYMBOL DETECTION

Reservoir computing [29]–[32] is a special kind of recurrent
neural network (RNN) model that emerged from chaotic sys-
tems. An RC system consists of a reservoir for mapping inputs
onto a high-dimensional space and a readout for mapping
internal reservoir states to target outputs, as shown in Figure 3.
The reservoir can be regarded as a randomly generated chaotic
recurrent network. Once the reservoir weights are generated,
the weights for input mapping and recurrent connections re-
main fixed, while only the readout weights need to be trained.
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Figure 3. Basic RC structure

This simplified training procedure significantly reduces the
training overhead and makes RC a promising candidate for
wireless systems and applications where training information
is very limited.

A. Echo State Network

Echo state network is one of the prominent candidates of
reservoir computing. It has been shown that ESN can outper-
form traditional RNNs in non-linear system identification and
temporal information processing applications [33], [34].

The basic computational model of ESN consists of three
layers as illustrated in Figure 3: 1) an input layer with Ni
nodes for data x(n) ∈ RNi , 2) a reservoir layer with Ns
neurons for evaluating the current state s(n) ∈ RNs using
the current inputs x(n), previous state s(n− 1), and outputs
y(n− 1) ∈ RNo , and 3) an output layer with No nodes. The
reservoir dynamics is governed by the following state update
equation:

s(n) = f
(
Ws(n− 1) + W inx(n) + W fby(n− 1)

)
, (15)

where W ∈ RNs×Ns is the state transition matrix, W in ∈
RNs×Ni is the input weight matrix, W fb ∈ RNs×No is the
output feedback matrix, and f(·) is the activation function for
reservoir neurons. Define the extended system state as

z(n) = [s(n)T ,x(n)T ]T , (16)

the current ESN output y(n) ∈ RNo is obtained by

y(n) = g(W outz(n)), (17)

where W out ∈ RNo×(Ns+Ni) is the output weights matrix,
and g(·) is the output activation function.

Assuming a batch of Ntrain training samples is collected,
the ESN can be trained by learning the output weights W out

using the following steps. First, feed the ESN with the
inputs X = {x(1), · · · ,x(Ntrain)} to generate the reser-
voir states S = {s(1), · · · , s(Ntrain)}, the extended states
Z = {z(1), · · · , z(Ntrain)}, and the corresponding outputs
Y = {y(1), · · · ,y(Ntrain)} according to (15) to (17). Next,
obtain W out by minimizing the loss between outputs Y and
known training labels Ỹ = {ỹ(1), · · · , ỹ(Ntrain)} as

W out = argmin
W out

Loss(Y , Ỹ ). (18)

When using the identity function as the output activation
and Frobenius norm as the loss function, we can rewrite the
minimization problem as

W out = argmin
W out

‖Ỹ −W outZ‖2F , (19)

which is a linear regression problem and can be solved using
the least square (LS) estimation:

W out = Ỹ Z†, (20)

where Z† is the Moore-Penrose inverse of Z.

B. Recursive Learning Methods
When using the LS estimation method, the output weights

can only be obtained after all training samples are collected.
In real-time applications such as wireless communications,
however, recursive learning methods are required to update the
output weights in a timely manner and track the dynamics of
the underlying environment. This paper adopts two recursive
methods for training ESN, namely recursive least square (RLS)
[34], [35] and generalized adaptive weighted recursive least
squares (GAW-RLS) [36].

1) Recursive least square (RLS): RLS is designed to find
the optimal output weights at the current training step n such
that the sum of discounted previous errors is minimized

W out(n) = argmin
W out

n∑
m=1

λn−m‖y(m)−W outz(m)‖22, (21)

where λ ∈ (0, 1] is known as the forgetting factor. When
λ < 1, the minimization problem (21) gives more weight
to errors associated with recent samples than older ones. In
other words, RLS emphasizes recent observations and tends
to forget the past, making it an adaptive algorithm with
tracking capabilities. Such behavior is needed in wireless
communication scenarios where the underlying environment
gradually changes.

For finding the optimal output weights, the current weights
are updated recursively with previous weights and current
prediction as follows,

W out(n) = W out(n− 1) + en−1(n)kT (n), (22)

where
en−1(n) = y(n)−W out(n− 1)z(n)

is the current prediction error using output weights from
previous step, and

k(n) =
Ψ(n− 1)z(n)

λ+ zT (n)Ψ(n− 1)z(n)
. (23)

Ψ(n) is inverse of the weighted extended state correlation
matrix, defined as

Ψ(n) =
( n∑
m=0

λn−mz(m)zT (m)
)−1

, (24)

and it can be updated recursively by

Ψ(n) = λ−1
(
Ψ(n− 1)− k(n)[zT (n)Ψ(n− 1)]

)
. (25)

RLS can be regarded as a standard backpropagation algorithm
with an adaptive learning rate determined by k(n).
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Figure 4. RC-based symbol detection architecture

2) Generalized adaptive weighted RLS (GAW-RLS): Since
the input samples of NN are usually corrupted by noise, new
training samples may have different levels of importance, i.e.,
highly corrupted samples may not help much. Therefore, it is
reasonable to generalize RLS by adding a weighting factor ω ∈
[0, 1] to new training samples. As a result, the minimization
problem in (21) becomes:

W out(n) = argmin
W out(n)

n∑
m=1

λn−mω(m)D(m,n), (26)

where

D(m,n) = ‖y(m)−W out(n)z(m)‖22.

This problem can be solved the same way as (22). The only
modification is replacing the calculation of k(n) in (23) by

k(n) =
ω(n)Ψ(n− 1)z(n)

λ+ ω(n)zT (n)Ψ(n− 1)z(n)
. (27)

According to [36], [37], the weighting factor ω is usually set
inversely proportional to the prediction error as follows:

ω(n) ∝ 1/‖en−1(n)‖2 (28)

Therefore, RLS can be regarded as a special case of GAW-
RLS when ω = 1. GAW-RLS adds additional flexibility in the
training process to cope with the dynamic MIMO channels.

C. ESN-based Symbol Detection

In this work, we design an ESN-based symbol detection
method for MIMO-OFDM systems, an online method that only
utilizes existing reference signals. The system architecture is
illustrated in Figure 4. The received symbols from multiple
antennas are denoted as yr

i , and the predicted symbols are
denoted x̂t

i. Adopting the recursive methods for training ESN,
the training procedure is divided into two steps: 1) using TS
to train the initial ESN output weights, and 2) using pilots to
update the weights recursively with each OFDM symbol.

1) Initial training with TS: The training data set can be
expressed as an input-label tuple and prepared as

ΦTS , {ITS ,LTS}
= {[y1,y2, · · · ,yNTS ], [x1,x2, · · · ,xNTS ]}, (29)

where yi , [y0
i , · · · ,y

Nr−1
i ]T , xi , [x0

i , · · · ,x
Nt−1
i ]T . The

initial ESN output weights are obtained using the least square
method described by (20).

2) Recursive training using pilots: For each data symbol
(the ith symbol, i > NTS), the training tuple is prepared as:

Φpilot,i , {Ipilot,i,Lpilot,i} (30)

where

Ipilot,i ,
[
I0
pilot,i, · · · , I

Nr−1
pilot,i

]T
, (31)

Lpilot,i ,
[
L0
pilot,i, · · · ,L

Nt−1
pilot,i

]T
. (32)

Training input Irpilot,i is obtained by first nulling the data sub-
carriers of Y r

i , then converting it to time domain, and finally
adding the CP, i.e.,

Irpilot,i = fcp(F
HΣY r

i ), (33)

where fcp(·) stands for adding CP; FH is the inverse Fourier
transform matrix; Σ is a diagonal matrix. The diagonal entries
of Σ are 0 at data sub-carrier locations and 1 on pilot sub-
carrier locations. Similarly, the training label is prepared as

Ltpilot,i = fcp(F
HΣXt

i ). (34)

We can see that both the training input and label are only
related to pilot information. After the output weights have been
updated using new training samples Φpilot,i, ESN will take the
ith received symbol yi as input to infer the transmitted symbol.

In terms of the training method, instead of the one-shot ma-
trix inversion used for initial training, the real-time recursive
method is more suitable because it updates the ESN weights
based on new training samples in a timely manner, which, in
essence, tracks the underlying channel change and achieves
better performance. Nevertheless, pilots are sparsely placed
in the frequency domain; therefore, ESN may not learn the
complete system information using only the pilots. Therefore,
the decision feedback mechanism is introduced to address this
limitation.

IV. SYMBOL DETECTION WITH DECISION FEEDBACK

The recursive training methods address the real-time re-
quirement for ESN training in time-varying channels. At the
same time, they also limit the number of training samples
for each ESN training operation. For MIMO channels, the
limited number of pilots may not be enough to train the
ESN accurately. In addressing these performance trade-offs,
the decision feedback mechanism is combined with recursive
approaches to further improve the performance of ESN-based
symbol detection. Furthermore, the decision feedback method
is also applicable to flexible pilot patterns in MIMO-OFDM
systems. The following sections refer to the RC-based symbol
detection with decision feedback as RC-DF.

A. Decision Feedback Training

After the initial and recursive training procedures, the in-
ferred OFDM data symbols are used to construct new training
data for re-training the ESN. Specifically, denote the inferred
ith transmitted OFDM symbol as x̂ti, obtain its frequency
counterpart X̂t

i by removing CP and performing FFT, then
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map X̂t
i to the nearest QAM symbol to obtain X̄t

i . Denote
the decision feedback training data set as

ΦDF,i , {IDF,i,LDF,i} (35)

where IDF,i ,
[
I0
DF,i, I

1
DF,i, . . . , I

Nr−1
DF,i

]T
, and LDF,i ,[

L0
DF,i,L

1
DF,i, . . . ,L

Nt−1
DF,i

]T
. The training input is prepared

as IrDF,i = yri , and the training label is prepared as

LtDF,i = fcp(F
HX̄t

i ). (36)

After the ESN weights are updated using the GAW-RLS
method for the current OFDM symbol, the symbol detection
procedure moves to the next OFDM symbol. The procedure
is summarized in Algorithm 1.

Algorithm 1 Symbol Detection with Decision Feedback
1: for Each OFDM frame do
2: Initialize input and recurrent weights
3: Collect initial training data ΦTS according to (29)
4: Use ΦTS to obtain initial weights according to (20)
5: for OFDM symbol i = NTS + 1 : N do
6: Prepare dataset Φpilot,i according to (30)
7: Use Φpilot,i to update weights by GAW-RLS
8: Infer ith transmitted symbol x̂ti and X̄t

i

9: Prepare DF dataset ΦDF,i as defined in (35)
10: Use ΦDF,i to update ESN weights by GAW-RLS
11: end for
12: end for

B. Simulation and Analysis

In this section, the performance of introduced RC-DF
methods is evaluated using numerical simulations. We first
describe the settings of the experiments and then present
the performance results and comparisons with conventional
model-based approaches and other learning-based strategies.

A MIMO-OFDM system with Nt = 4, and Nr = 4 is
adopted. The length of training sequence NTS = 8, and the
frame length N = 100. For a total number of Nsc = 64 sub-
carriers, 4 sub-carriers carry pilots, 48 sub-carriers carry data,
and the rest are null sub-carriers. The CP length Ncp = 16.
16-QAM modulation is used to generate information symbols
X̃t
i (k). The wireless channels coefficients are generated fol-

lowing the 3GPP propagation channel model [38], [39], and
the specific model chosen is the Extended Pedestrian A model
(EPA), for which the user speed is 10 km/h.

In all the simulations, the total number of recurrent neurons
in the ESN is Ns = 32. A sliding window of size 4 samples is
added to the ESN input layer as suggested in [22]. The input
weights are randomly generated from a uniform distribution,
and the state transition matrix is also randomly generated with
a spectrum radius of 0.2 to satisfy the echo state property [40].
Feedback weights are not used and are set to zeros. The forget-
ting factor λ for GAW-RLS is set to 0.9995, and the weighting
factor is set as ω(n) = 1/(1+exp (α+ β log(‖en−1(n)‖22))),
where α = 27 and β = 15 are empirical values with good
performance.
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Figure 5. BER performance without PA distortion
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Figure 6. BER performance with PA distortion

At the transmitter side, the pre-coding matrix Q is set to
the identity matrix. In investigating the performance of all
methods with regard to the RF circuit non-linearity, the OFDM
signal is passed through a power amplifier (PA) model before
transmitting to the wireless channel. The PA model adopted
is RAPP [41], in which the output of PA is modeled as:

u(x) =
x[

1 +
( |x|
xsat

)2ρ]1/2ρ , (37)

where x is the input of PA, xsat is the PA saturation level, and
ρ is the smoothing parameter. When |x| � xsat and u(x) ≈
x, the PA works in the linear region, and the signal has no
distortion. On the other hand, when |x| → xsat, the PA works
in the non-linear region, and the signal is highly compressed.
In the simulation, xsat = 1 and ρ = 3 are used.

The performance of two learning-based methods and two
conventional model-based methods are compared: RC-DF is
the learning-based method introduced in this paper, RC is
the RC-based method introduced in [24]. Two conventional
methods are LMMSE symbol detection and sphere decoding
(SD) [42].

The BER performance without PA distortion is shown in
Figure 5. In this case, PA is working in the linear region,
in which the ratio between PA’s saturation power to the
input power, a.k.a input back-off (IBO), is greater than 8
dB. The results show that all learning-based methods outper-
form model-based methods in low to median Eb/No regime.
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Conventional model-based methods need estimated channel
information as input, which is inaccurate when noise is high.
In contrast, the learning-based method can directly learn a
mapping from received symbols to transmitted ones without
intermediate channel estimation steps. When Eb/No is high,
RC can achieve close to SD performance, while the introduced
RC-DF outperforms SD, owing to the decision feedback that
provides more informative training data.

Figure 6 shows the BER performance with PA distortion.
In this case, input signal power is close to the PA saturation
region, and the peak-to-average-power-ratio (PAPR) of the
OFDM signal is higher than the IBO value. In the simulation,
the OFDM PAPR range is between 6 dB to 9 dB, while
IBO is set to smaller than 5.5 dB. The BER performance
results show that learning-based methods work better than
conventional methods when IBO is low, meaning they can
learn and compensate for the non-linearity of the PA. It should
be noted that the decrease of IBO produces two opposite
effects: 1) the positive effect is SNR improves as signal power
increases; 2) the adverse effect is signal distortion. The BER
of RC-DF first decreases shows that it can recover the signal
when the distortion is not severe; therefore, it benefits from
the improved SNR. On the other hand, when the IBO is too
low, RC-DF also suffers from high signal distortion as other
methods do. This phenomenon demonstrates that RC-DF is
more robust to signal distortion than other methods. Overall,
the introduced RC-DF method achieves the best performance.

V. REAL-TIME SDR IMPLEMENTATION

The RC-based symbol detection scheme can be applied
to IEEE 802.11 wireless system in a plug-and-play manner
by adopting the existing frame structure and transmission
procedures. Simulation studies in the previous section show
that the proposed RC-based symbol detection method can
provide better performance than conventional model-based
methods. However, only a limited number of channel models
and test cases are used, which could be very different from
real-world scenarios. Furthermore, the simplified RAPP model
of non-linear effects is used because it is very difficult or
even impossible to model all hardware-related impairment
using simulation techniques, such as clock timing offset,
non-stationary phase noise, and complex RF characteristics.
Finally, we need to have a concrete implementation to evaluate
and demonstrate the real-time capabilities of the proposed ML-
based techniques. Therefore, a real-time SDR transceiver has
been built using the GNU Radio framework, as described in
the following sub-sections.

A. System Parameters

The IEEE 802.11 standard, which has similar MIMO-
OFDM features as 4G/5G cellular networks but has better
RF hardware support for SDR implementation and testing,
is adopted for the real-time MIMO-OFDM transceiver im-
plementation. The conventional symbol detection methods are
also implemented and compared with the proposed RC-based
symbol detection methods with decision feedback.

Figure 7. Real-time machine learning for SDR Platform

The high-throughput (HT) frame structure in IEEE 802.11
is used for data packet transmission. A packet frame, including
the training sequence and data, contains a total of 100 OFDM
symbols for each transmission antenna. FFT size of 64 is used
for OFDM modulation and demodulation. Due to the speed
limit of the SDR hardware, a base-band sampling rate of 10M
samples/s is used, which puts more stringent requirements on
the accuracy of carrier frequency synchronization and clock
timing error estimation.

The MIMO-OFDM transceiver supports up to four transmit
and receive antennas. However, due to the limited number
of SDR equipment available, two antennas per transmit-
ter/receiver and two simultaneous spatial streams are used
in the field tests. In our SDR-based implementation, all the
high-throughput (HT) format preamble signals are used as
TS for RC initial training. However, these signals do not
have good statistical properties in the original specification
and are unsuitable for ESN training. Therefore, some of these
preamble signals are replaced with new predefined sequences
with better statistical properties in the actual implementation.

B. Real-time Platform

The architecture of the real-time platform is illustrated
in Figure 7. The MIMO-OFDM transceiver application is
implemented using GNU Radio and runs on an Ubuntu Linux
PC host. Multiple SDR front-ends can be connected to the
host via gigabit Ethernet (GbE) and USB ports. Two models
of the universal software radio peripheral (USRP) by Ettus
Research, namely USRP N210 and USRP B210, were used
in field tests. Multiple USRP N210s can be synchronized as a
single MIMO transceiver. Each USRP N210 is equipped with
an SBX RF front-end capable of transmitting/receiving in the
400MHz-4.4GHz frequency range. The USRP B210 is capable
of transmitting/receiving in the 70MHz-6GHz range with two
transmit and two receive antennas.

A hardware ESN accelerator has been designed to improve
signal processing speed using the field programmable gate
array (FPGA) on a Xilinx VC707 FPGA evaluation board.
The ESN accelerator is used for computing the reservoir state
updates for both training and inference operations. The ESN
accelerator communicates with host programs via PCIe or GbE
interfaces, and a GNU Radio application can directly utilize
its functionality using built-in Linux system interfaces.
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Besides the software-hardware co-design of the machine
learning for SDR platform, many optimization efforts have
been spent to make the transceiver work in real-time. For
example, most of the customized GNU Radio modules are
written as C++ classes, and vector optimization with the
VOLK library [43] is used for time-consuming operations.
In addition, the ESN symbol detection algorithm is highly
optimized by adopting parallel computing techniques and
linear algebra libraries.

C. Receiver Implementation

Figure 8 shows the MIMO-OFDM receiver architecture
and modules as a GNU Radio flow graph. The “USRP
source” block takes in base-band IQ samples for multiple
antennas from USRP front-ends. The “Packet Detect” block
is responsible for detecting the start of an incoming packet
and performing coarse and fine frequency offset estimation and
compensation. For conventional symbol detection methods, the
received time-domain signal is first converted to frequency-
domain by the “OFDM Demod” block. The “ChanEst &
CPE” block is responsible for estimating both the MIMO
channel coefficients using the packet preamble and common
phase errors (CPE) using continuous pilot tones. Finally, the
“Equalizer and demapper” block uses the LMMSE detection
method to recover the transmitted QAM symbols.

For ESN-based symbol detection, the received time-domain
samples are directly fed to the “RC demod” block, which
trains and predicts the transmitted signals using all received
OFDM symbols in a frame. The resulting average bit error rate
(BER) and estimated signal-to-noise ratio (SNR) are computed
and logged when a packet is processed. The resulting QAM
signal constellation is displayed in real-time for debugging
and testing. In addition, the received bit streams are saved
for further offline processing, such as stream de-multiplexing,
de-interleaving, and channel decoding.

VI. FIELD TESTS

Extensive field tests have been conducted in various environ-
ments, including multiple apartment buildings, several office
rooms, and an RF laboratory in our department buildings.
These real-world tests have helped us improve the transceiver
implementation and gain much insight in addressing MIMO
channel characteristics. Due to the space limit, only the
summary results for one of the test campaigns are described
in the following sub-sections.

A. Test Setup

The test campaign was conducted in an apartment with rep-
resentative real-world channel characteristics. The apartment is
closely surrounded by other apartments and tall trees, creating
abundant multipath reflections. Inside the apartment, there are
many metallic closet doors, which are responsible for signal
blockage and strong signal reflection paths. For all the tests,
the base station (BS) was fixed at the corner of the bedroom,
and the user equipment (UE) was moved around to different
locations, as illustrated in Figure 9.

The system performance was evaluated using different sce-
narios as listed in Table I, in which the scenario number
corresponds to the UE location in Figure 9. Generally, the
signal strength decreases as the UEs move further away from
the BS. It should be noted that the system had the worst
performance in location 5 due to the blockage of all direct
paths and the presence of strong multipath reflection.

B. Results and Analysis

For each scenario, five tests were carried out with slightly
different receiver orientation and antenna angles such that
the resulting multipath profile would change randomly. At
least 100 data frames were transmitted and processed in each
test. The average bit error rate (BER) was measured after
detecting QAM symbols without decoding convolutional or
LDPC code blocks . The estimated MIMO channel coefficients
for each data frame were saved for analyzing the multipath
components and channel conditions. The average signal-to-
noise ratio (SNR) estimation was also reported for analysis.

1) Effects of Non-linearity: For evaluating the effects of
non-linearity on transceiver performance, the transmitter and
receiver gains were adjusted to the non-linear region. The SBX
RF front-end in USRP N210 has discrete RF amplifiers with
an adjustable gain range of 0-31.5dB, but non-linear effects
appear when the gain is above 28dB. The B210 has integrated
LNAs within its AD9361 transceiver IC with an adjustable
gain range of 0-76 dB, but the signal quality starts to degrade
significantly when the gain is above 50 dB. In this test, the
transceiver pair was placed at the location for scenario 1,
the transmitter gain was set at 28dB, and the receiver gain
was changed from 35dB to 55dB. Figure 10 summarizes the
test results. The RC-based method is more robust against the
transceiver non-linearity than the conventional method.

2) Average BER Results: In test scenarios 1 to 3, there
were strong line-of-sight and reflection paths between the
transmitter and receiver; the signal changed dramatically with
minor changes in the receiver position. In scenarios 5 and 6,
there were no line-of-sight paths between the transmitter and
receiver, but refection paths were present. The channel con-
ditions varied significantly from test to test. The ESN-based
symbol detection worked rather well in these complex chan-
nel conditions and significantly outperformed the LMMSE
symbol detector. In scenario 7, there were fewer multipath
components, and the receiver performance was better than the
previous scenarios, but the ESN-based detector still had better
performance. Overall, the ESN-based detector had a lower
average BER, as shown in Figure 11.

In summary, the performance of the conventional LMMSE
symbol detection method is on par with the ESN detector when
the received signal strength is high, and the channel condition
is good. However, the ESN-based method works much better
when the received signal strength is low (high receiver gain),
or there are complex MIMO channel conditions. The ESN-
based symbol detector is also more robust against non-linear
effects in the transceiver signal chain.
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Figure 8. Top-level flow-graph for the MIMO-OFDM receiver implementation using GNU Radio

Table I
SUMMARY OF TEST SCENARIOS

Scenario Distance TxGain RxGain Description

1 2m 0-30dB 25-55dB LOS signal present, signal strength is strong.
2 5m 23dB 48dB LOS signal plus strong reflection paths, signal strength is strong
3 8m 25dB 58dB No line-of-sign path, some reflection paths, signal strength is medium.
4 9m 27dB 60dB No line-of-sign path, some reflection paths, signal strength is medium.
5 10m 28dB 60dB Line-of-sign path blocked by walls and appliance, signal strength is weak.
6 10m 30dB 60dB Line-of-sign path blocked by walls and appliance, signal strength is weak.
7 12m 30dB 62dB Single reflection path, weakest signal strength.

Figure 9. Illustration of field test scenarios
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Figure 10. BER performance under non-linearity

VII. CONCLUSIONS

This paper presents the first comprehensive study and find-
ings of a real-time implementation of an RC-based symbol de-
tection scheme for real-world wireless systems. First, conven-
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Figure 11. Summary of MIMO-OFDM test results

tional algorithms and RC-based methods for detecting symbols
in MIMO-OFDM systems are examined and compared. The
advantages of the RC-based approach are evaluated by com-
prehensive simulation studies. Next, the proposed methods are
implemented on an SDR platform and validated in various test
scenarios.

The real-time implementation of the RC-based symbol
detection method is an illustration of the prominent features
and advantages of reservoir computing:

• Only the output layer for the reservoir needs training, and
the training algorithm is simple, effective, and suitable for
real-time wireless systems.

• The rich dynamics of the recurrent reservoir can project
inputs onto high dimensional spaces so that even complex
MIMO channels can be implicitly compensated for using
RC-based neural networks.
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• The real-time software and hardware co-design show that
RC-based signal processing techniques can be efficiently
implemented and scaled to complex scenarios.

In summary, the application of ML-based real-time process-
ing to real-world MIMO-OFDM scenarios in this paper shows
that ML-based signal processing can be a promising paradigm
for future wireless systems.
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