Job opportunities

Centres Inria associés

Contexte

<p><span style="font-weight: 400;">The successful candidate will join a dynamic and international research team at IMT Atlantique, Nantes (https://stack.inria.fr). As a research intern,&nbsp;you will contribute to the design, implementation and validation of agentic services for data-driven applications across Device-Edge-Cloud computing infrastructures.&nbsp;</span></p>
<p><span style="font-weight: 400;">Edge intelligence enhances AI capabilities by bringing computation closer to data sources (e.g., IoT, vehicles), improving latency, bandwidth usage, privacy, and responsiveness. Traditional edge AI approaches typically involve static models and centralized orchestration. In contrast, Agentic AI empowers decentralized agents to adapt, reason, and act autonomously based on local context and evolving workloads &mdash; an emerging paradigm for truly general edge intelligence.</span></p>
<p><span style="font-weight: 400;">The successful candidate will be supervised by Daniel Balouek (Inria STACK, IMT Atlantique).</span></p>
<p>This work will be conducted as part of the QUICK project (_Collaborative services for Urgent systems across the Edge-Cloud Computing Continuum_, 2025-2027), funded by the "Etoiles Montantes" regional award.</p>
<p>&nbsp;</p>

Mission confié

<p><span style="font-weight: 400;">The internship will focus on computation offloading, task scheduling, and adaptive resource allocation. Baseline methods (heuristics and classical ML-based approaches) will be implemented first. These will be extended using agentic AI techniques such as reinforcement learning and multi-agent systems, where each edge node acts as an autonomous agent observing its local state and optimizing decisions based on learned policies.</span></p>

Principales activités

<p><strong>Define, implement, and evaluate agentic behaviors</strong><span style="font-weight: 400;"> for distributed edge nodes, leveraging scalable </span><strong>experiments on the Grid&rsquo;5000 testbed</strong><span style="font-weight: 400;"> and algorithmic insights from Edge-Cloud operations, incorporating:</span></p>
<ol>
<li style="font-weight: 400;"><strong>Survey </strong><span style="font-weight: 400;">Edge Intelligence operations such as computation offloading, data pipelines and on-edge learning to extract key algorithmic techniques and metrics.</span><strong>&nbsp;</strong></li>
<li style="font-weight: 400;"><span style="font-weight: 400;">Define </span><strong>agentic AI behaviors</strong><span style="font-weight: 400;"> (state, actions, reward) suitable for edge resource management;</span></li>
<li style="font-weight: 400;"><span style="font-weight: 400;">Develop agentic policy models using </span><strong>reinforcement learning (RL)</strong><span style="font-weight: 400;"> or </span><strong>multi-agent reinforcement learning (MARL)</strong><span style="font-weight: 400;"> to autonomously decide:</span></li>
</ol>
<ul>
<li style="font-weight: 400;"><span style="font-weight: 400;">when and where to offload tasks,</span></li>
<li style="font-weight: 400;"><span style="font-weight: 400;">how to allocate resources,</span></li>
<li style="font-weight: 400;"><span style="font-weight: 400;">how to adapt to network variability</span></li>
</ul>
<p><span style="font-weight: 400;">&nbsp; &nbsp; &nbsp;4. Evaluate:</span></p>
<ul>
<li style="font-weight: 400;"><strong>Latency</strong><span style="font-weight: 400;"> and </span><strong>throughput</strong><span style="font-weight: 400;"> improvements over baseline strategies.</span></li>
<li style="font-weight: 400;"><strong>Energy/CPU utilization</strong><span style="font-weight: 400;"> and stability under load.</span></li>
<li style="font-weight: 400;"><strong>Agent adaptability<span style="font-weight: 400;"> to changing workloads &amp; link conditions</span></strong></li>
</ul>
<p>&nbsp;</p>
<h2><span style="font-weight: 400;">References</span></h2>
<p><span style="font-weight: 400;">Daniel Balouek-Thomert, Ivan Rodero, and Manish Parashar. Harnessing the computing continuum for urgent science. SIGMETRICS Perform. Eval. Rev., 48(2) :41&ndash;46, November 2020.</span></p>
<p><span style="font-weight: 400;">Zhang, Ruichen, Guangyuan Liu, Yinqiu Liu, Changyuan Zhao, Jiacheng Wang, Yunting Xu, Dusit Niyato et al. "Toward edge general intelligence with agentic AI and agentification: Concepts, technologies, and future directions." </span><em><span style="font-weight: 400;">arXiv preprint arXiv:2508.18725</span></em><span style="font-weight: 400;"> (2025).</span></p>
<p><strong><span style="font-weight: 400;"><br /><span style="font-weight: 400;">S. Ilager </span><em><span style="font-weight: 400;">et al.</span></em><span style="font-weight: 400;">, &ldquo;Proteus: Towards Intent-driven Automated Resource Management for Edge Sensor Nodes,&rdquo; in 14th Workshop on AI and Scientific Computing, 2024.</span></span></strong></p>

Compétences

<p><span style="font-weight: 400;">Cloud Computing, Edge Computing, Distributed systems</span></p>
<p><span style="font-weight: 400;">Python, Docker/Kubernetes</span></p>
<p><span style="font-weight: 400;">Reinforcement learning</span></p>
<p><span style="font-weight: 400;">Knowledge of sequential decision-making (MDP, influence diagrams, bandits, etc.)</span></p>
<p><span style="font-weight: 400;">Be independent and curious about research</span></p>
<p><span style="font-weight: 400;">Have an excellent level in English (spoken and written)</span></p>
<p><span style="font-weight: 400;">Multi-agent systems and/or Knowledge of the Grid '5000 testbed are a plus.</span></p>

Référence

2025-09682

Domaine d'activité

Agentic AI for Edge Computing Intelligence

Job opportunities

Centres Inria associés

Contexte

<p><span style="font-weight: 400;">The successful candidate will join a dynamic and international research team at IMT Atlantique, Nantes (https://stack.inria.fr). As a research intern,&nbsp;you will contribute to the design, implementation and validation of agentic services for data-driven applications across Device-Edge-Cloud computing infrastructures.&nbsp;</span></p>
<p><span style="font-weight: 400;">Edge intelligence enhances AI capabilities by bringing computation closer to data sources (e.g., IoT, vehicles), improving latency, bandwidth usage, privacy, and responsiveness. Traditional edge AI approaches typically involve static models and centralized orchestration. In contrast, Agentic AI empowers decentralized agents to adapt, reason, and act autonomously based on local context and evolving workloads &mdash; an emerging paradigm for truly general edge intelligence.</span></p>
<p><span style="font-weight: 400;">The successful candidate will be supervised by Daniel Balouek (Inria STACK, IMT Atlantique).</span></p>
<p>This work will be conducted as part of the QUICK project (_Collaborative services for Urgent systems across the Edge-Cloud Computing Continuum_, 2025-2027), funded by the "Etoiles Montantes" regional award.</p>
<p>&nbsp;</p>

Mission confié

<p><span style="font-weight: 400;">The internship will focus on computation offloading, task scheduling, and adaptive resource allocation. Baseline methods (heuristics and classical ML-based approaches) will be implemented first. These will be extended using agentic AI techniques such as reinforcement learning and multi-agent systems, where each edge node acts as an autonomous agent observing its local state and optimizing decisions based on learned policies.</span></p>

Principales activités

<p><strong>Define, implement, and evaluate agentic behaviors</strong><span style="font-weight: 400;"> for distributed edge nodes, leveraging scalable </span><strong>experiments on the Grid&rsquo;5000 testbed</strong><span style="font-weight: 400;"> and algorithmic insights from Edge-Cloud operations, incorporating:</span></p>
<ol>
<li style="font-weight: 400;"><strong>Survey </strong><span style="font-weight: 400;">Edge Intelligence operations such as computation offloading, data pipelines and on-edge learning to extract key algorithmic techniques and metrics.</span><strong>&nbsp;</strong></li>
<li style="font-weight: 400;"><span style="font-weight: 400;">Define </span><strong>agentic AI behaviors</strong><span style="font-weight: 400;"> (state, actions, reward) suitable for edge resource management;</span></li>
<li style="font-weight: 400;"><span style="font-weight: 400;">Develop agentic policy models using </span><strong>reinforcement learning (RL)</strong><span style="font-weight: 400;"> or </span><strong>multi-agent reinforcement learning (MARL)</strong><span style="font-weight: 400;"> to autonomously decide:</span></li>
</ol>
<ul>
<li style="font-weight: 400;"><span style="font-weight: 400;">when and where to offload tasks,</span></li>
<li style="font-weight: 400;"><span style="font-weight: 400;">how to allocate resources,</span></li>
<li style="font-weight: 400;"><span style="font-weight: 400;">how to adapt to network variability</span></li>
</ul>
<p><span style="font-weight: 400;">&nbsp; &nbsp; &nbsp;4. Evaluate:</span></p>
<ul>
<li style="font-weight: 400;"><strong>Latency</strong><span style="font-weight: 400;"> and </span><strong>throughput</strong><span style="font-weight: 400;"> improvements over baseline strategies.</span></li>
<li style="font-weight: 400;"><strong>Energy/CPU utilization</strong><span style="font-weight: 400;"> and stability under load.</span></li>
<li style="font-weight: 400;"><strong>Agent adaptability<span style="font-weight: 400;"> to changing workloads &amp; link conditions</span></strong></li>
</ul>
<p>&nbsp;</p>
<h2><span style="font-weight: 400;">References</span></h2>
<p><span style="font-weight: 400;">Daniel Balouek-Thomert, Ivan Rodero, and Manish Parashar. Harnessing the computing continuum for urgent science. SIGMETRICS Perform. Eval. Rev., 48(2) :41&ndash;46, November 2020.</span></p>
<p><span style="font-weight: 400;">Zhang, Ruichen, Guangyuan Liu, Yinqiu Liu, Changyuan Zhao, Jiacheng Wang, Yunting Xu, Dusit Niyato et al. "Toward edge general intelligence with agentic AI and agentification: Concepts, technologies, and future directions." </span><em><span style="font-weight: 400;">arXiv preprint arXiv:2508.18725</span></em><span style="font-weight: 400;"> (2025).</span></p>
<p><strong><span style="font-weight: 400;"><br /><span style="font-weight: 400;">S. Ilager </span><em><span style="font-weight: 400;">et al.</span></em><span style="font-weight: 400;">, &ldquo;Proteus: Towards Intent-driven Automated Resource Management for Edge Sensor Nodes,&rdquo; in 14th Workshop on AI and Scientific Computing, 2024.</span></span></strong></p>

Compétences

<p><span style="font-weight: 400;">Cloud Computing, Edge Computing, Distributed systems</span></p>
<p><span style="font-weight: 400;">Python, Docker/Kubernetes</span></p>
<p><span style="font-weight: 400;">Reinforcement learning</span></p>
<p><span style="font-weight: 400;">Knowledge of sequential decision-making (MDP, influence diagrams, bandits, etc.)</span></p>
<p><span style="font-weight: 400;">Be independent and curious about research</span></p>
<p><span style="font-weight: 400;">Have an excellent level in English (spoken and written)</span></p>
<p><span style="font-weight: 400;">Multi-agent systems and/or Knowledge of the Grid '5000 testbed are a plus.</span></p>

Référence

2025-09682

Domaine d'activité