Equipe-projet

SIERRA

Apprentissage Statistique et optimisation
Apprentissage Statistique et optimisation

L'apprentissage statistique est un domaine scientifique recent, positionne entre les mathematiques appliquees, les statistiques et l'informatique. Ses objectifs sont l'optimisation, le controle et la modelisation de systemes complexes a partir d'examples. Il s'applique a des donnees de nombreuses autres disciplines scientifiques (comme la vision, la bioinformatique, les neurosciences, le traitement du signal sonore, le traitement du texte, l'economie, la finance, etc.), le but final etant de degager des theories et algorithmes generaux permettant des avancees interessantes dans chacune de ces disciplines. L'apprentissage est caracterise by la qualite et la quantite des echanges entre theorie, algorithmes et applications: la plupart des problemes theoriques interessants sont issus d'applications, alors que l'analyse theorique permet de comprendre pourquoi et quand les algorithmes couramment utilises fonctionnent ou pas, et permet aussi de proposer des ameliorations significatives. Notre positionnement academique est exactement a l'intersection entre ces trois aspects---algorithmes, theorie et applications---et notre principal objectif scientifique est de faire le lien entre theorie et algorithmes, ainsi qu'entre algorithmes et applications a fort impact dans differents domaines, en particulier la vision artificielle, la bioinformatique, le traitement du signal audio, le traitement du texte et la neuro-imagerie.

Centre(s) inria
Centre Inria de Paris
En partenariat avec
Ecole normale supérieure de Paris,CNRS,École normale supérieure - PSL

Contacts

Responsable de l'équipe

Marina Kovacic

Assistant(e) de l'équipe

Abigail Palma

Assistant(e) de l'équipe